Energy Medicine, Uncategorized

Researcher to grow human cells in space to test treatment for stroke

Abba Zubair, M.D., Ph.D, believes that cells grown in the International Space Station (ISS) could help patients recover from a stroke, and that it may even be possible to generate human tissues and organs in space. He just needs a chance to demonstrate the possibility.

He now has it. The Center for the Advancement of Science in Space (CASIS), a that promotes research aboard the ISS, has awarded Dr. Zubair a $300,000 grant to send human stem cells into space to see if they grow more rapidly than stem cells grown on Earth.

Dr. Zubair, medical and scientific director of the Cell Therapy Laboratory at Mayo Clinic in Florida, says the experiment will be the first one Mayo Clinic has conducted in space and the first to use these human stem cells, which are found in bone marrow.

“On Earth, we face many challenges in trying to grow enough stem cells to treat patients,” he says. “It now takes a month to generate enough cells for a few patients. A clinical-grade laboratory in space could provide the answer we all have been seeking for regenerative medicine.”

He specifically wants to expand the population of stem cells that will induce regeneration of neurons and blood vessels in patients who have suffered a, the kind of stroke which is caused by blood clot. Dr. Zubair already grows such cells in his Mayo Clinic laboratory using a large tissue culture and several incubators—but only at a snail’s pace.

Experiments on Earth using microgravity have shown that —the that produce all organ and tissue cell types—will grow faster, compared to conventionally grown cells.

“If you have a ready supply of these cells, you can treat almost any condition, and can theoretically regenerate entire organs using a scaffold,” Dr. Zubair says. “Additionally, they don’t need to come from individual patients—anyone can use them without rejection.”

Dr. Zubair is working with engineers at the University of Colorado who are building the specialized cell bioreactor that will be taken to the ISS within a year for the experiment.

“I don’t really think growing cells in space for clinical use on Earth is science fiction,” he says. “Commercial flights to the ISS will start soon, and the cost of traveling there is coming down. We just need to show what can be achieved in space, and this award from CASIS helps us do that.”

NASA and the Center for the Advancement of Science in Space (CASIS) are enabling research aboard the International Space Station that could lead to new stem cell-based therapies for medical conditions faced on Earth and in space.

Scientists will take advantage of the space station’s  to study the properties of non-embryonic stem cells.

NASA is interested in space-based cell research because it is seeking ways to combat the  astronauts face in microgravity, including bone loss and . Mitigation techniques are necessary to allow humans to push the boundaries of  far into the solar system. This knowledge could help people on Earth, particularly the elderly, who are afflicted with similar conditions.

Two stem cell investigations scheduled to fly to the  next year were highlighted Friday, Dec. 6, at the World Stem Cell Summit in San Diego. Lee Hood, a member of the CASIS Board of Directors, moderated a panel session in which scientists Mary Kearns-Jonker of Loma Linda University in California and Roland Kaunas of Texas A&M University discussed their planned research, which will gauge the impact of microgravity on fundamental stem cell properties.

Kearns-Jonker’s research will study the aging of neonatal and adult cardiac stem cells in microgravity with the ultimate goal of improving cardiac cell therapy. Kaunas is a part of a team of researchers developing a system for co-culturing and analyzing stem cells mixed with bone tumor cells in microgravity. This system will allow researchers to identify potential molecular targets for drugs specific to certain types of cancer.

Stem cells are cells that have not yet become specialized in their functions. They display a remarkable ability to give rise to a spectrum of cell types and ensure life-long tissue rejuvenation and regeneration. Experiments on Earth and in space have shown that microgravity induces changes in the way stem cells grow, divide and specialize. Stem cell biology in microgravity could inform fields ranging from discovery science to tissue engineering to regenerative medicine.

NASA selected CASIS to maximize use of the International Space Station’s U.S. National Laboratory through 2020. CASIS is dedicated to supporting and accelerating innovations and new discoveries that will enhance the health and wellbeing of people and our planet.

Scientists will take advantage of the space station’s  to study the properties of non-embryonic stem cells.

NASA is interested in space-based cell research because it is seeking ways to combat the  astronauts face in microgravity, including bone loss and . Mitigation techniques are necessary to allow humans to push the boundaries of  far into the solar system. This knowledge could help people on Earth, particularly the elderly, who are afflicted with similar conditions.

Two stem cell investigations scheduled to fly to the  next year were highlighted Friday, Dec. 6, at the World Stem Cell Summit in San Diego. Lee Hood, a member of the CASIS Board of Directors, moderated a panel session in which scientists Mary Kearns-Jonker of Loma Linda University in California and Roland Kaunas of Texas A&M University discussed their planned research, which will gauge the impact of microgravity on fundamental stem cell properties.

Kearns-Jonker’s research will study the aging of neonatal and adult cardiac stem cells in microgravity with the ultimate goal of improving cardiac cell therapy. Kaunas is a part of a team of researchers developing a system for co-culturing and analyzing stem cells mixed with bone tumor cells in microgravity. This system will allow researchers to identify potential molecular targets for drugs specific to certain types of cancer.

Stem cells are cells that have not yet become specialized in their functions. They display a remarkable ability to give rise to a spectrum of cell types and ensure life-long tissue rejuvenation and regeneration. Experiments on Earth and in space have shown that microgravity induces changes in the way stem cells grow, divide and specialize. Stem cell biology in microgravity could inform fields ranging from discovery science to tissue engineering to regenerative medicine.

NASA selected CASIS to maximize use of the International Space Station’s U.S. National Laboratory through 2020. CASIS is dedicated to supporting and accelerating innovations and new discoveries that will enhance the health and wellbeing of people and our planet.
Provided by NASA

Leave a Reply

Your email address will not be published. Required fields are marked *