Energy Medicine, Uncategorized

World's first successful visualisation of key coenzyme

World's first successful visualisation of key coenzyme

Fluorescent imaging of HeLa cell. Credit: National Institute for Materials Science (NIMS)

Japanese researchers have successfully developed the world’s first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat could ultimately facilitate the diagnosis of cancer and liver dysfunction and help to elucidate the mechanisms of neurological disorders.

A Japanese research team led by Drs. Hirokazu Komatsu and Katsuhiko Ariga of the International Center for Materials Nanoarchitectonics, in collaboration with Professors Yutaka Shido and Kotaro Oka of Keio University, have developed the world’s first method for visualising the coenzyme nicotine-adenine dinucleotide derivative (NAD(P)H) inside cells.

Fluorescent imaging – used to identify and visualise cellular components by attaching a  substance – is an effective method for exploring vital phenomena. Until now, however, the development of a method for visualising NAD(P)H, which plays a key role in various vital phenomena and diseases, has proven elusive due to the low reactivity of NAD(P)H to fluorescent substances.

The research group succeeded in developing a new fluorescent probe that specifically reacts with NAD(P)H, and achieved fluorescent imaging of NAD(P)H for the first time in the world, through the combined use of the new probe and an artificial promoter capable of promoting reactivity.

The new NADH imaging method could be used for various purposes, including: promoting early detection and supporting cancer treatment by detecting NADH leakage from invasive cancers; diagnosing  by detecting excessive NADH caused by cirrhosis of the liver; and elucidating the lack of NADH in patients with brain or  such as Alzheimer’s Disease, depression, and Parkinson’s Disease. The new method will also prove of great value in other life sciences research.

Provided by National Institute for Materials Science

Leave a Reply

Your email address will not be published. Required fields are marked *